- Journal Home
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
The cycle index polynomial of a symmetric group is a basic tool in combinatorics and especially in Pόlya enumeration theory. It seems irrelevant to numerical analysis. Through Faá di Bruno's formula, cycle index is connected with numerical analysis. In this work, the Hermite interpolation polynomial is explicitly expressed in terms of cycle index. Applications in Gauss-Turán quadrature formula are also considered.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/821.html} }The cycle index polynomial of a symmetric group is a basic tool in combinatorics and especially in Pόlya enumeration theory. It seems irrelevant to numerical analysis. Through Faá di Bruno's formula, cycle index is connected with numerical analysis. In this work, the Hermite interpolation polynomial is explicitly expressed in terms of cycle index. Applications in Gauss-Turán quadrature formula are also considered.