- Journal Home
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
The relation between weak and $p$-th mean convergence of numerical methods for integration of some convex, non-smooth and path-dependent functionals of ordinary stochastic differential equations (SDEs) is discussed. In particular, we answer how rates of $p$-th mean convergence carry over to rates of weak convergence for such functionals of SDEs in general. Assertions of this type are important for the choice of approximation schemes for discounted price functionals in dynamic asset pricing as met in mathematical finance and other commonly met functionals such as passage times in engineering.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/797.html} }The relation between weak and $p$-th mean convergence of numerical methods for integration of some convex, non-smooth and path-dependent functionals of ordinary stochastic differential equations (SDEs) is discussed. In particular, we answer how rates of $p$-th mean convergence carry over to rates of weak convergence for such functionals of SDEs in general. Assertions of this type are important for the choice of approximation schemes for discounted price functionals in dynamic asset pricing as met in mathematical finance and other commonly met functionals such as passage times in engineering.