- Journal Home
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
This paper deals with a uniform (in a perturbation parameter) convergent difference scheme for solving a nonlinear singularly perturbed two-point boundary value problem with discontinuous data of a convection-diffusion type. Construction of the difference scheme is based on locally exact schemes or on local Green's functions. Uniform convergence with first order of the proposed difference scheme on arbitrary meshes is proven. A monotone iterative method, which is based on the method of upper and lower solutions, is applied to computing the nonlinear difference scheme. Numerical experiments are presented.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/795.html} }This paper deals with a uniform (in a perturbation parameter) convergent difference scheme for solving a nonlinear singularly perturbed two-point boundary value problem with discontinuous data of a convection-diffusion type. Construction of the difference scheme is based on locally exact schemes or on local Green's functions. Uniform convergence with first order of the proposed difference scheme on arbitrary meshes is proven. A monotone iterative method, which is based on the method of upper and lower solutions, is applied to computing the nonlinear difference scheme. Numerical experiments are presented.