- Journal Home
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
Image registration has many real life applications. Affine image registration is one of the commonly-used parametric models. Iterative solution methods for the underlying least squares problem suffer from convergence problems whenever good initial guesses are not available. Variational models are non-parametric deformable models that have been proposed based on least squares fitting and regularization. The fast iterative solution methods often require a reliable parametric (affine) method in a pre-registration step. In this paper we first survey and study a class of methods suitable for providing the good initial guesses for the affine model and a diffusion based variational model. It appears that these initialization methods, while useful for many cases, are not always reliable. Then we propose a regularized affine least squares approach that can overcome the convergence problems associated with existing methods. Combined with a cooling idea in a multiresolution setting, it can ensure robustness and selection of the optimal coupling parameter efficiently. Numerical examples are given to demonstrate the effectiveness of our proposed approach.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/770.html} }Image registration has many real life applications. Affine image registration is one of the commonly-used parametric models. Iterative solution methods for the underlying least squares problem suffer from convergence problems whenever good initial guesses are not available. Variational models are non-parametric deformable models that have been proposed based on least squares fitting and regularization. The fast iterative solution methods often require a reliable parametric (affine) method in a pre-registration step. In this paper we first survey and study a class of methods suitable for providing the good initial guesses for the affine model and a diffusion based variational model. It appears that these initialization methods, while useful for many cases, are not always reliable. Then we propose a regularized affine least squares approach that can overcome the convergence problems associated with existing methods. Combined with a cooling idea in a multiresolution setting, it can ensure robustness and selection of the optimal coupling parameter efficiently. Numerical examples are given to demonstrate the effectiveness of our proposed approach.