- Journal Home
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
This work is concerned with the design of a $hp$-like discontinuous Galerkin (DG) method for solving the two-dimensional time-domain Maxwell equations on non-conforming locally refined triangular meshes. The proposed DG method allows non-conforming meshes with arbitrary-level hanging nodes. This method combines a centered approximation for the evaluation of fluxes at the interface between neighboring elements of the mesh, with a leap-frog time integration scheme. It is an extension of the DG formulation recently studied in [13]. Several numerical results are presented to illustrate the efficiency and the accuracy of the method, but also to discuss its limitations, through a set of 2D propagation problems in homogeneous and heterogeneous media.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/763.html} }This work is concerned with the design of a $hp$-like discontinuous Galerkin (DG) method for solving the two-dimensional time-domain Maxwell equations on non-conforming locally refined triangular meshes. The proposed DG method allows non-conforming meshes with arbitrary-level hanging nodes. This method combines a centered approximation for the evaluation of fluxes at the interface between neighboring elements of the mesh, with a leap-frog time integration scheme. It is an extension of the DG formulation recently studied in [13]. Several numerical results are presented to illustrate the efficiency and the accuracy of the method, but also to discuss its limitations, through a set of 2D propagation problems in homogeneous and heterogeneous media.