- Journal Home
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
In this paper, the Lamé coefficients in the linear elasticity problem are estimated by using the measurements of displacement. Some a posteriori error estimators for the approximation error of the parameters are derived, and then adaptive finite element schemes are developed for the discretization of the parameter estimation problem, based on the error estimators. The Gauss-Newton method is employed to solve the discretized nonlinear least-squares problem. Some numerical results are presented.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/754.html} }In this paper, the Lamé coefficients in the linear elasticity problem are estimated by using the measurements of displacement. Some a posteriori error estimators for the approximation error of the parameters are derived, and then adaptive finite element schemes are developed for the discretization of the parameter estimation problem, based on the error estimators. The Gauss-Newton method is employed to solve the discretized nonlinear least-squares problem. Some numerical results are presented.