- Journal Home
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Discrete Maximum Principles for FEM Solutions of Some Nonlinear Elliptic Interface Problems
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{IJNAM-6-1,
author = {Karátson , J. and Korotov , S.},
title = {Discrete Maximum Principles for FEM Solutions of Some Nonlinear Elliptic Interface Problems},
journal = {International Journal of Numerical Analysis and Modeling},
year = {2009},
volume = {6},
number = {1},
pages = {1--16},
abstract = {
Discrete maximum principles are proved for finite element discretizations of nonlinear elliptic interface problems with jumps of the normal derivatives. The geometric conditions in the case of simplicial meshes are suitable acuteness or nonobtuseness properties.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/753.html} }
TY - JOUR
T1 - Discrete Maximum Principles for FEM Solutions of Some Nonlinear Elliptic Interface Problems
AU - Karátson , J.
AU - Korotov , S.
JO - International Journal of Numerical Analysis and Modeling
VL - 1
SP - 1
EP - 16
PY - 2009
DA - 2009/06
SN - 6
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/ijnam/753.html
KW - Nonlinear elliptic problem, interface problem, maximum principle, discrete maximum principle, finite element method, simplicial mesh.
AB -
Discrete maximum principles are proved for finite element discretizations of nonlinear elliptic interface problems with jumps of the normal derivatives. The geometric conditions in the case of simplicial meshes are suitable acuteness or nonobtuseness properties.
Karátson , J. and Korotov , S.. (2009). Discrete Maximum Principles for FEM Solutions of Some Nonlinear Elliptic Interface Problems.
International Journal of Numerical Analysis and Modeling. 6 (1).
1-16.
doi:
Copy to clipboard