- Journal Home
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
A nonlinear ternary 4-point interpolatory subdivision scheme is presented. It is based on a nonlinear perturbation of the ternary subdivision scheme studied in Hassan M.F., Ivrissimtzis I.P., Dodgson N.A. and Sabin M.A. (2002): "An interpolating 4-point ternary stationary subdivision scheme", Comput. Aided Geom. Design, 19, 1-18. The convergence of the scheme and the regularity of the limit function are analyzed. It is shown that the Gibbs phenomenon, classical in linear schemes, is eliminated. The stability of the associated nonlinear multiresolution scheme is established. Up to our knowledge, this is the first interpolatory scheme of regularity larger than one, avoiding Gibbs oscillations and for which the stability of the associated multiresolution analysis is established. All these properties are very important for real applications.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/719.html} }A nonlinear ternary 4-point interpolatory subdivision scheme is presented. It is based on a nonlinear perturbation of the ternary subdivision scheme studied in Hassan M.F., Ivrissimtzis I.P., Dodgson N.A. and Sabin M.A. (2002): "An interpolating 4-point ternary stationary subdivision scheme", Comput. Aided Geom. Design, 19, 1-18. The convergence of the scheme and the regularity of the limit function are analyzed. It is shown that the Gibbs phenomenon, classical in linear schemes, is eliminated. The stability of the associated nonlinear multiresolution scheme is established. Up to our knowledge, this is the first interpolatory scheme of regularity larger than one, avoiding Gibbs oscillations and for which the stability of the associated multiresolution analysis is established. All these properties are very important for real applications.