- Journal Home
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
In this paper, two numerical schemes for finding approximate solutions of singular two-point boundary value problems arising in physiology are presented. While the main ingredient of both approaches is the employment of cubic B-splines, the obstacle of singularity has to be removed first. In the first approach, L'Hopital's rule is used to remove the singularity due to the boundary condition (BC) $y'(0) = 0$. In the second approach, the economized Chebyshev polynomial is implemented in the vicinity of the singular point due to the BC $y(0) = A$, where $A$ is a constant. Numerical examples are presented to demonstrate the applicability and efficiency of the methods on one hand and to confirm the second order convergence on the other hand.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/689.html} }In this paper, two numerical schemes for finding approximate solutions of singular two-point boundary value problems arising in physiology are presented. While the main ingredient of both approaches is the employment of cubic B-splines, the obstacle of singularity has to be removed first. In the first approach, L'Hopital's rule is used to remove the singularity due to the boundary condition (BC) $y'(0) = 0$. In the second approach, the economized Chebyshev polynomial is implemented in the vicinity of the singular point due to the BC $y(0) = A$, where $A$ is a constant. Numerical examples are presented to demonstrate the applicability and efficiency of the methods on one hand and to confirm the second order convergence on the other hand.