- Journal Home
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
This paper is to develop immersed finite element (IFE) functions for solving second order elliptic boundary value problems with discontinuous coefficients and non-homogeneous jump conditions. These IFE functions can be formed on meshes independent of interface. Numerical examples demonstrate that these IFE functions have the usual approximation capability expected from polynomials employed. The related IFE methods based on the Galerkin formulation can be considered as natural extensions of those IFE methods in the literature developed for homogeneous jump conditions, and they can optimally solve the interface problems with a nonhomogeneous flux jump condition.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/686.html} }This paper is to develop immersed finite element (IFE) functions for solving second order elliptic boundary value problems with discontinuous coefficients and non-homogeneous jump conditions. These IFE functions can be formed on meshes independent of interface. Numerical examples demonstrate that these IFE functions have the usual approximation capability expected from polynomials employed. The related IFE methods based on the Galerkin formulation can be considered as natural extensions of those IFE methods in the literature developed for homogeneous jump conditions, and they can optimally solve the interface problems with a nonhomogeneous flux jump condition.