- Journal Home
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
The problem of non-local nonlinear non-Fickian polymer diffusion as modelled by a diffusion equation with a nonlinearly coupled boundary value problem for a viscoelastic 'pseudostress' is considered (see, for example, DA Edwards in Z. angew. Math. Phys., 52, 2001, pp. 254-288). We present two numerical schemes using the implicit Euler method and also the Crank-Nicolson method. Each scheme uses a Galerkin finite element method for the spatial discretisation. Special attention is paid to linearising the discrete equations by extrapolating the value of the nonlinear terms from previous time steps. A priori error estimates are given, based on the usual assumptions that the exact solution possesses certain regularity properties, and numerical experiments are given to support these error estimates. We demonstrate by example that although both schemes converge at their optimal rates the Euler method may be more robust than the Crank-Nicolson method for problems of practical relevance.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/684.html} }The problem of non-local nonlinear non-Fickian polymer diffusion as modelled by a diffusion equation with a nonlinearly coupled boundary value problem for a viscoelastic 'pseudostress' is considered (see, for example, DA Edwards in Z. angew. Math. Phys., 52, 2001, pp. 254-288). We present two numerical schemes using the implicit Euler method and also the Crank-Nicolson method. Each scheme uses a Galerkin finite element method for the spatial discretisation. Special attention is paid to linearising the discrete equations by extrapolating the value of the nonlinear terms from previous time steps. A priori error estimates are given, based on the usual assumptions that the exact solution possesses certain regularity properties, and numerical experiments are given to support these error estimates. We demonstrate by example that although both schemes converge at their optimal rates the Euler method may be more robust than the Crank-Nicolson method for problems of practical relevance.