- Journal Home
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
The authors formulated in [32] a multipoint flux mixed finite element method that reduces to a cell-centered pressure system on general quadrilaterals and hexahedra for elliptic equations arising in subsurface flow problems. In addition they showed that a special quadrature rule yields $\mathcal{O}(h)$ convergence for face fluxes on distorted hexahedra. Here a first order local velocity postprocessing procedure using these face fluxes is developed and analyzed. The algorithm involves solving a 3$\times$3 system on each element and utilizes an enhanced mixed finite element space introduced by Falk, Gatto, and Monk [18]. Computational results verifying the theory are demonstrated.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/649.html} }The authors formulated in [32] a multipoint flux mixed finite element method that reduces to a cell-centered pressure system on general quadrilaterals and hexahedra for elliptic equations arising in subsurface flow problems. In addition they showed that a special quadrature rule yields $\mathcal{O}(h)$ convergence for face fluxes on distorted hexahedra. Here a first order local velocity postprocessing procedure using these face fluxes is developed and analyzed. The algorithm involves solving a 3$\times$3 system on each element and utilizes an enhanced mixed finite element space introduced by Falk, Gatto, and Monk [18]. Computational results verifying the theory are demonstrated.