- Journal Home
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
We prove an optimal-order error estimate in a weighted energy norm for bilinear Galerkin finite element method for two-dimensional time-dependent advection-diffusion equations by the means of integral identities or expansions, in the sense that the generic constants in the estimates depend only on certain Sobolev norms of the true solution but not on the scaling parameter $\varepsilon$. These estimates, combined with a priori stability estimates of the governing partial differential equations, yield an "$\varepsilon$-uniform estimate of the bilinear Galerkin finite element method, in which the generic constants depend only on the Sobolev norms of the initial and right data but not on the scaling parameter $\varepsilon$.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/612.html} }We prove an optimal-order error estimate in a weighted energy norm for bilinear Galerkin finite element method for two-dimensional time-dependent advection-diffusion equations by the means of integral identities or expansions, in the sense that the generic constants in the estimates depend only on certain Sobolev norms of the true solution but not on the scaling parameter $\varepsilon$. These estimates, combined with a priori stability estimates of the governing partial differential equations, yield an "$\varepsilon$-uniform estimate of the bilinear Galerkin finite element method, in which the generic constants depend only on the Sobolev norms of the initial and right data but not on the scaling parameter $\varepsilon$.