- Journal Home
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
The main aim of this paper is to study the approximation of nonconforming mixed finite element methods for stationary, incompressible magnetohydrodynamics (MHD) equations in 3D. A family of nonconforming finite elements are taken as the approximation spaces for the velocity field, the piecewise constant element for the pressure and the Nédélec's element with the lowest order for the magnetic field on hexahedra or tetrahedra. A new simple method is adopted to prove the discrete Poincaré-Friedrichs inequality instead of the discrete Helmholtz decomposition method. The existence and uniqueness of the approximate solutions are shown. The convergence analysis is presented and the optimal order error estimates for the pressure in $L^2$-norm, as well as those in a broken $H^1$-norm for the velocity field and H($curl$)-norm for the magnetic field are derived.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/603.html} }The main aim of this paper is to study the approximation of nonconforming mixed finite element methods for stationary, incompressible magnetohydrodynamics (MHD) equations in 3D. A family of nonconforming finite elements are taken as the approximation spaces for the velocity field, the piecewise constant element for the pressure and the Nédélec's element with the lowest order for the magnetic field on hexahedra or tetrahedra. A new simple method is adopted to prove the discrete Poincaré-Friedrichs inequality instead of the discrete Helmholtz decomposition method. The existence and uniqueness of the approximate solutions are shown. The convergence analysis is presented and the optimal order error estimates for the pressure in $L^2$-norm, as well as those in a broken $H^1$-norm for the velocity field and H($curl$)-norm for the magnetic field are derived.