- Journal Home
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
In this paper, we develop a new energy-conserved S-FDTD scheme for the Maxwell's equations in metamaterials. We first derive out the new property of energy conservation of the governing equations in metamaterials, and then propose the energy-conserved S-FDTD scheme for solving the problems based on the staggered grids. We prove that the proposed scheme is energy-conserved in the discrete form and unconditionally stable. Based on the energy method, we further prove that the scheme for the Maxwell's equations in metamaterials is first order in time and second order in space. Numerical experiments are carried out to confirm the energy conservation and the convergence rates of the scheme. Moreover, numerical examples are also taken to show the propagation features of electromagnetic waves in the DNG metamaterials.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/595.html} }In this paper, we develop a new energy-conserved S-FDTD scheme for the Maxwell's equations in metamaterials. We first derive out the new property of energy conservation of the governing equations in metamaterials, and then propose the energy-conserved S-FDTD scheme for solving the problems based on the staggered grids. We prove that the proposed scheme is energy-conserved in the discrete form and unconditionally stable. Based on the energy method, we further prove that the scheme for the Maxwell's equations in metamaterials is first order in time and second order in space. Numerical experiments are carried out to confirm the energy conservation and the convergence rates of the scheme. Moreover, numerical examples are also taken to show the propagation features of electromagnetic waves in the DNG metamaterials.