- Journal Home
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
In this work, we propose a simple yet effective gradient projection algorithm for a class of stochastic optimal control problems. The basic iteration block is to compute gradient projection of the objective functional by solving the state and co-state equations via some Euler methods and by using the Monte Carlo simulations. Convergence properties are discussed and extensive numerical tests are carried out. Possibility of extending this algorithm to more general stochastic optimal control is also discussed.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/594.html} }In this work, we propose a simple yet effective gradient projection algorithm for a class of stochastic optimal control problems. The basic iteration block is to compute gradient projection of the objective functional by solving the state and co-state equations via some Euler methods and by using the Monte Carlo simulations. Convergence properties are discussed and extensive numerical tests are carried out. Possibility of extending this algorithm to more general stochastic optimal control is also discussed.