- Journal Home
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
A system of linear equations $Ax = b$, in $n$ unknowns and $m$ equations which has a nonnegative solution is considered. Among all its solutions, the one which has the least norm is sought when $\mathbb{R}^n$ is equipped with a strictly convex norm. We present a globally convergent, iterative algorithm for computing this solution. This algorithm takes into account the special structure of the problem. Each iteration cycle of the algorithm involves the solution of a similar quadratic problem with a modified objective function. Duality conditions for optimality are studied. Feasibility and global convergence of the algorithm are proved. As a special case we implemented and tested the algorithm for the $\ell^p$-norm, where $1 < p < ∞$. Numerical results are included.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/593.html} }A system of linear equations $Ax = b$, in $n$ unknowns and $m$ equations which has a nonnegative solution is considered. Among all its solutions, the one which has the least norm is sought when $\mathbb{R}^n$ is equipped with a strictly convex norm. We present a globally convergent, iterative algorithm for computing this solution. This algorithm takes into account the special structure of the problem. Each iteration cycle of the algorithm involves the solution of a similar quadratic problem with a modified objective function. Duality conditions for optimality are studied. Feasibility and global convergence of the algorithm are proved. As a special case we implemented and tested the algorithm for the $\ell^p$-norm, where $1 < p < ∞$. Numerical results are included.