- Journal Home
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
Linear elements are least expensive finite elements for simultaneously recovering the source location and intensity in a general convection-diffusion process. However, the derivatives of the least-squares objective functional with Tikhonov regularizations are not well-defined when linear finite elements are used. In this work we provide a systematic formulation of the numerical inversion using linear finite elements and propose some effective techniques to overcome the undefinedness that may occur in inversion process. We show that linear finite elements can be made very robust and efficient in simultaneously recovering the source location and intensity. Numerical results are presented to validate the robustness and effectiveness of the proposed algorithm.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/584.html} }Linear elements are least expensive finite elements for simultaneously recovering the source location and intensity in a general convection-diffusion process. However, the derivatives of the least-squares objective functional with Tikhonov regularizations are not well-defined when linear finite elements are used. In this work we provide a systematic formulation of the numerical inversion using linear finite elements and propose some effective techniques to overcome the undefinedness that may occur in inversion process. We show that linear finite elements can be made very robust and efficient in simultaneously recovering the source location and intensity. Numerical results are presented to validate the robustness and effectiveness of the proposed algorithm.