arrow
Volume 10, Issue 1
Multiscale Computation of a Steklov Eigenvalue Problem with Rapidly Oscillating Coefficients

L. Cao, L. Zhang, W. Allegretto & Y. Lin

Int. J. Numer. Anal. Mod., 10 (2013), pp. 42-73.

Published online: 2013-10

Export citation
  • Abstract

In this paper we consider the multiscale computation of a Steklov eigenvalue problem with rapidly oscillating coefficients. The new contribution obtained in this paper is a superapproximation estimate for solving the homogenized Steklov eigenvalue problem and to present a multiscale numerical method. Numerical simulations are then carried out to validate the theoretical results reported in the present paper.

  • AMS Subject Headings

35R35, 49J40, 60G40

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address
  • BibTex
  • RIS
  • TXT
@Article{IJNAM-10-42, author = {L. Cao, L. Zhang, W. Allegretto and Y. Lin}, title = {Multiscale Computation of a Steklov Eigenvalue Problem with Rapidly Oscillating Coefficients}, journal = {International Journal of Numerical Analysis and Modeling}, year = {2013}, volume = {10}, number = {1}, pages = {42--73}, abstract = {

In this paper we consider the multiscale computation of a Steklov eigenvalue problem with rapidly oscillating coefficients. The new contribution obtained in this paper is a superapproximation estimate for solving the homogenized Steklov eigenvalue problem and to present a multiscale numerical method. Numerical simulations are then carried out to validate the theoretical results reported in the present paper.

}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/558.html} }
TY - JOUR T1 - Multiscale Computation of a Steklov Eigenvalue Problem with Rapidly Oscillating Coefficients AU - L. Cao, L. Zhang, W. Allegretto & Y. Lin JO - International Journal of Numerical Analysis and Modeling VL - 1 SP - 42 EP - 73 PY - 2013 DA - 2013/10 SN - 10 DO - http://doi.org/ UR - https://global-sci.org/intro/article_detail/ijnam/558.html KW - Steklov eigenvalue problem, multiscale method, superapproximation estimate. AB -

In this paper we consider the multiscale computation of a Steklov eigenvalue problem with rapidly oscillating coefficients. The new contribution obtained in this paper is a superapproximation estimate for solving the homogenized Steklov eigenvalue problem and to present a multiscale numerical method. Numerical simulations are then carried out to validate the theoretical results reported in the present paper.

L. Cao, L. Zhang, W. Allegretto and Y. Lin. (2013). Multiscale Computation of a Steklov Eigenvalue Problem with Rapidly Oscillating Coefficients. International Journal of Numerical Analysis and Modeling. 10 (1). 42-73. doi:
Copy to clipboard
The citation has been copied to your clipboard