- Journal Home
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Finite Volume Multilevel Approximation of the Shallow Water Equations with a Time Explicit Scheme
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{IJNAM-11-762,
author = {A. Bousquet, M. Marion and R. Temam},
title = {Finite Volume Multilevel Approximation of the Shallow Water Equations with a Time Explicit Scheme},
journal = {International Journal of Numerical Analysis and Modeling},
year = {2014},
volume = {11},
number = {4},
pages = {762--786},
abstract = {
We consider a simple advection equation in space dimension one and the linearized shallow water equations in space dimension two and describe and implement two different multilevel finite volume discretizations in the context of the utilization of the incremental methods with time explicit or semi-explicit schemes.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/551.html} }
TY - JOUR
T1 - Finite Volume Multilevel Approximation of the Shallow Water Equations with a Time Explicit Scheme
AU - A. Bousquet, M. Marion & R. Temam
JO - International Journal of Numerical Analysis and Modeling
VL - 4
SP - 762
EP - 786
PY - 2014
DA - 2014/11
SN - 11
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/ijnam/551.html
KW - finite volume methods, multilevel methods, Euler explicit schemes, shallow water equations, stability analysis.
AB -
We consider a simple advection equation in space dimension one and the linearized shallow water equations in space dimension two and describe and implement two different multilevel finite volume discretizations in the context of the utilization of the incremental methods with time explicit or semi-explicit schemes.
A. Bousquet, M. Marion and R. Temam. (2014). Finite Volume Multilevel Approximation of the Shallow Water Equations with a Time Explicit Scheme.
International Journal of Numerical Analysis and Modeling. 11 (4).
762-786.
doi:
Copy to clipboard