- Journal Home
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
The two-level penalty finite element methods for Navier-Stokes equations with nonlinear slip boundary conditions are investigated in this paper, whose variational formulation is the Navier-Stokes type variational inequality problem of the second kind. The basic idea is to solve the Navier-Stokes type variational inequality problem on a coarse mesh with mesh size $H$ in combining with solving a Stokes type variational inequality problem for simple iteration or solving a Oseen type variational inequality problem for Oseen iteration on a fine mesh with mesh size $h$. The error estimate obtained in this paper shows that if $H = O(h^{5/9})$, then the two-level penalty methods have the same convergence orders as the usual one-level penalty finite element method, which is only solving a large Navier-Stokes type variational inequality problem on the fine mesh. Hence, our methods can save an amount of computational work.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/544.html} }The two-level penalty finite element methods for Navier-Stokes equations with nonlinear slip boundary conditions are investigated in this paper, whose variational formulation is the Navier-Stokes type variational inequality problem of the second kind. The basic idea is to solve the Navier-Stokes type variational inequality problem on a coarse mesh with mesh size $H$ in combining with solving a Stokes type variational inequality problem for simple iteration or solving a Oseen type variational inequality problem for Oseen iteration on a fine mesh with mesh size $h$. The error estimate obtained in this paper shows that if $H = O(h^{5/9})$, then the two-level penalty methods have the same convergence orders as the usual one-level penalty finite element method, which is only solving a large Navier-Stokes type variational inequality problem on the fine mesh. Hence, our methods can save an amount of computational work.