- Journal Home
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
We consider very weak solutions of a nonlinear version (non-Hookean materials) of the beam stationary Bernoulli-Euler equation, as well as the similar extension to plates, involving the bi-Laplacian operator, with Navier (hinged) boundary conditions. We are specially interested in the case in which the usual Sobolev space framework cannot be applied due to the singularity of the load density near the boundary. We present some properties of such solutions as well as some numerical experiences illustrating how the behaviour of the very weak solutions near the boundary is quite different to the one of more regular solutions corresponding to non-singular load functions.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/528.html} }We consider very weak solutions of a nonlinear version (non-Hookean materials) of the beam stationary Bernoulli-Euler equation, as well as the similar extension to plates, involving the bi-Laplacian operator, with Navier (hinged) boundary conditions. We are specially interested in the case in which the usual Sobolev space framework cannot be applied due to the singularity of the load density near the boundary. We present some properties of such solutions as well as some numerical experiences illustrating how the behaviour of the very weak solutions near the boundary is quite different to the one of more regular solutions corresponding to non-singular load functions.