- Journal Home
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
In this work, we show the convergence of adaptive lowest-order FEM (AFEM) for an elliptic obstacle problem with non-homogeneous Dirichlet data, where the obstacle $\chi$ is restricted only by $\chi\in H^2(\Omega)$. The adaptive loop is steered by some residual based error estimator introduced in Braess, Carstensen & Hoppe (2007) that is extended to control oscillations of the Dirichlet data, as well. In the spirit of Cascon ET AL. (2008), we show that a weighted sum of energy error, estimator, and Dirichlet oscillations satisfies a contraction property up to certain vanishing energy contributions. This result extends the analysis of Braess, Carstensen & Hoppe (2007) and Page & Praetorius (2013) to the case of non-homogeneous Dirichlet data as well as certain non-affine obstacles and introduces some energy estimates to overcome the lack of nestedness of the discrete spaces.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/523.html} }In this work, we show the convergence of adaptive lowest-order FEM (AFEM) for an elliptic obstacle problem with non-homogeneous Dirichlet data, where the obstacle $\chi$ is restricted only by $\chi\in H^2(\Omega)$. The adaptive loop is steered by some residual based error estimator introduced in Braess, Carstensen & Hoppe (2007) that is extended to control oscillations of the Dirichlet data, as well. In the spirit of Cascon ET AL. (2008), we show that a weighted sum of energy error, estimator, and Dirichlet oscillations satisfies a contraction property up to certain vanishing energy contributions. This result extends the analysis of Braess, Carstensen & Hoppe (2007) and Page & Praetorius (2013) to the case of non-homogeneous Dirichlet data as well as certain non-affine obstacles and introduces some energy estimates to overcome the lack of nestedness of the discrete spaces.