- Journal Home
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
A family of interior penalty $hp$-discontinuous Galerkin methods is developed and analyzed for the numerical solution of the quasilinear elliptic equation $-\nabla \cdot (\rm{A}$ $(\nabla u)\nabla u)=f$ posed on the open bounded domain $\Omega\subset\mathbb{R}^d$, $d\geq2$. Subject to the assumption that the map $\rm{v}\mapsto \rm{A}(\rm{v})\rm{v}$, $\rm{v} \in \mathbb{R}^d$, is Lipschitz continuous and strongly monotone, it is proved that the proposed method is well-posed. A priori error estimates are presented of the error in the broken $H^1(\Omega)$-norm, exhibiting precisely the same $h$-optimal and mildly $p$-suboptimal convergence rates as obtained for the interior penalty approximation of linear elliptic problems. A priori estimates for linear functionals of the error and the $L^2(\Omega)$-norm of the error are also established and shown to be $h$-optimal for a particular member of the proposed family of methods. The analysis is completed under fairly weak conditions on the approximation space, allowing for non-affine and curved elements with multilevel hanging nodes. The theoretical results are verified by numerical experiments.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/510.html} }A family of interior penalty $hp$-discontinuous Galerkin methods is developed and analyzed for the numerical solution of the quasilinear elliptic equation $-\nabla \cdot (\rm{A}$ $(\nabla u)\nabla u)=f$ posed on the open bounded domain $\Omega\subset\mathbb{R}^d$, $d\geq2$. Subject to the assumption that the map $\rm{v}\mapsto \rm{A}(\rm{v})\rm{v}$, $\rm{v} \in \mathbb{R}^d$, is Lipschitz continuous and strongly monotone, it is proved that the proposed method is well-posed. A priori error estimates are presented of the error in the broken $H^1(\Omega)$-norm, exhibiting precisely the same $h$-optimal and mildly $p$-suboptimal convergence rates as obtained for the interior penalty approximation of linear elliptic problems. A priori estimates for linear functionals of the error and the $L^2(\Omega)$-norm of the error are also established and shown to be $h$-optimal for a particular member of the proposed family of methods. The analysis is completed under fairly weak conditions on the approximation space, allowing for non-affine and curved elements with multilevel hanging nodes. The theoretical results are verified by numerical experiments.