- Journal Home
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
In this paper, an explicit a posteriori error estimator is developed for second and fourth order ODEs solved with the Galerkin method that, remarkably, provides exact pointwise error estimates. The error estimator is derived from the variational multiscale theory, in which the subgrid scales are approximated making use of fine-scale Green's functions. This methodology can be extended to any element type and order. Second and fourth order differential equations cover a great variety of problems in mechanics. Two examples with application in elasticity have been studied: the axially loaded beam and the Euler-Bernoulli beam. Because the error estimator is explicit, it can be very easily implemented and its computational cost is very small. Apart from pointwise error estimates, we present local and global a posteriori error estimates in the $L^1$-norm, the $L^2$-norm and the $H^1$-seminorm. Finally, convergence rates of the error and the efficiencies of the estimator are analyzed.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/497.html} }In this paper, an explicit a posteriori error estimator is developed for second and fourth order ODEs solved with the Galerkin method that, remarkably, provides exact pointwise error estimates. The error estimator is derived from the variational multiscale theory, in which the subgrid scales are approximated making use of fine-scale Green's functions. This methodology can be extended to any element type and order. Second and fourth order differential equations cover a great variety of problems in mechanics. Two examples with application in elasticity have been studied: the axially loaded beam and the Euler-Bernoulli beam. Because the error estimator is explicit, it can be very easily implemented and its computational cost is very small. Apart from pointwise error estimates, we present local and global a posteriori error estimates in the $L^1$-norm, the $L^2$-norm and the $H^1$-seminorm. Finally, convergence rates of the error and the efficiencies of the estimator are analyzed.