- Journal Home
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
This paper presents a hybridized formulation for the weak Galerkin finite element method for the biharmonic equation based on the discrete weak Hessian recently proposed by the authors. The hybridized weak Galerkin scheme is based on the use of a Lagrange multiplier defined on the element interfaces. The Lagrange multiplier is verified to provide a numerical approximation for certain derivatives of the exact solution. An error estimate of optimal order is established for the numerical approximations arising from the hybridized weak Galerkin finite element method. The paper also derives a computational algorithm (Schur complement) by eliminating all the unknowns associated with the interior variables on each element, yielding a significantly reduced system of linear equations for unknowns on the element interfaces.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/490.html} }This paper presents a hybridized formulation for the weak Galerkin finite element method for the biharmonic equation based on the discrete weak Hessian recently proposed by the authors. The hybridized weak Galerkin scheme is based on the use of a Lagrange multiplier defined on the element interfaces. The Lagrange multiplier is verified to provide a numerical approximation for certain derivatives of the exact solution. An error estimate of optimal order is established for the numerical approximations arising from the hybridized weak Galerkin finite element method. The paper also derives a computational algorithm (Schur complement) by eliminating all the unknowns associated with the interior variables on each element, yielding a significantly reduced system of linear equations for unknowns on the element interfaces.