- Journal Home
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
A two-grid algorithm is presented and discussed for a finite volume element method to a nonlinear parabolic equation in a convex polygonal domain. The two-grid algorithm consists of solving a small nonlinear system on a coarse-grid space with grid size $H$ and then solving a resulting linear system on a fine-grid space with grid size $h$. Error estimates are derived with the $H^1$-norm $O(h+H^2)$ which shows that the two-grid algorithm achieves asymptotically optimal approximation as long as the mesh sizes satisfy $h=O(H^2)$. Numerical examples are presented to validate the usefulness and efficiency of the method.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/484.html} }A two-grid algorithm is presented and discussed for a finite volume element method to a nonlinear parabolic equation in a convex polygonal domain. The two-grid algorithm consists of solving a small nonlinear system on a coarse-grid space with grid size $H$ and then solving a resulting linear system on a fine-grid space with grid size $h$. Error estimates are derived with the $H^1$-norm $O(h+H^2)$ which shows that the two-grid algorithm achieves asymptotically optimal approximation as long as the mesh sizes satisfy $h=O(H^2)$. Numerical examples are presented to validate the usefulness and efficiency of the method.