- Journal Home
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
This paper introduces a new weak Galerkin (WG) finite element method for second order elliptic equations on polytopal meshes. This method, called WG-FEM, is designed by using a discrete weak gradient operator applied to discontinuous piecewise polynomials on finite element partitions of arbitrary polytopes with certain shape regularity. The paper explains how the numerical schemes are designed and why they provide reliable numerical approximations for the underlying partial differential equations. In particular, optimal order error estimates are established for the corresponding WG-FEM approximations in both a discrete $H^1$ norm and the standard $L^2$ norm. Numerical results are presented to demonstrate the robustness, reliability, and accuracy of the WG-FEM. All the results are established for finite element partitions with polytopes that are shape regular.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/477.html} }This paper introduces a new weak Galerkin (WG) finite element method for second order elliptic equations on polytopal meshes. This method, called WG-FEM, is designed by using a discrete weak gradient operator applied to discontinuous piecewise polynomials on finite element partitions of arbitrary polytopes with certain shape regularity. The paper explains how the numerical schemes are designed and why they provide reliable numerical approximations for the underlying partial differential equations. In particular, optimal order error estimates are established for the corresponding WG-FEM approximations in both a discrete $H^1$ norm and the standard $L^2$ norm. Numerical results are presented to demonstrate the robustness, reliability, and accuracy of the WG-FEM. All the results are established for finite element partitions with polytopes that are shape regular.