- Journal Home
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
We consider the nonstationary 3D flow of a compressible viscous heat-conducting micropolar fluid in the domain to be a subset of $\boldsymbol{R^3}$, bounded with two concentric spheres. In the thermodynamical sense the fluid is perfect and polytropic. The homogeneous boundary conditions for velocity, microrotation, heat flux and spherical symmetry of the initial data are proposed. Due to the assumption of spherical symmetry, the problem can be considered as one-dimensional problem in Lagrangian description on the domain that is a segment. We define the approximate equations system by using the finite difference method and construct the sequence of approximate solutions for our problem. By analyzing the properties of these approximate solutions we prove their convergence to the generalized solution of our problem globally in time and establish the convergence of the defined numerical scheme, which is the main result of the paper. The practical application of the proposed numerical scheme is performed on the chosen test example.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/461.html} }We consider the nonstationary 3D flow of a compressible viscous heat-conducting micropolar fluid in the domain to be a subset of $\boldsymbol{R^3}$, bounded with two concentric spheres. In the thermodynamical sense the fluid is perfect and polytropic. The homogeneous boundary conditions for velocity, microrotation, heat flux and spherical symmetry of the initial data are proposed. Due to the assumption of spherical symmetry, the problem can be considered as one-dimensional problem in Lagrangian description on the domain that is a segment. We define the approximate equations system by using the finite difference method and construct the sequence of approximate solutions for our problem. By analyzing the properties of these approximate solutions we prove their convergence to the generalized solution of our problem globally in time and establish the convergence of the defined numerical scheme, which is the main result of the paper. The practical application of the proposed numerical scheme is performed on the chosen test example.