- Journal Home
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
In this paper, we propose a splitting least-squares mixed finite element method for the approximation of elliptic optimal control problem with the control constrained by pointwise inequality. By selecting a properly least-squares minimization functional, we derive equivalent two independent, symmetric and positive definite weak formulation for the primal state variable and its flux. Then, using the first order necessary and also sufficient optimality condition, we deduce another two corresponding adjoint state equations, which are both independent, symmetric and positive definite. Also, a variational inequality for the control variable is involved. For the discretization of the state and adjoint state equations, either RT mixed finite element or standard $C^0$ finite element can be used, which is not necessary subject to the Ladyzhenkaya-Babuska-Brezzi condition. Optimal a priori error estimates in corresponding norms are derived for the control, the states and adjoint states, respectively. Finally, we use some numerical examples to validate the theoretical analysis.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/455.html} }In this paper, we propose a splitting least-squares mixed finite element method for the approximation of elliptic optimal control problem with the control constrained by pointwise inequality. By selecting a properly least-squares minimization functional, we derive equivalent two independent, symmetric and positive definite weak formulation for the primal state variable and its flux. Then, using the first order necessary and also sufficient optimality condition, we deduce another two corresponding adjoint state equations, which are both independent, symmetric and positive definite. Also, a variational inequality for the control variable is involved. For the discretization of the state and adjoint state equations, either RT mixed finite element or standard $C^0$ finite element can be used, which is not necessary subject to the Ladyzhenkaya-Babuska-Brezzi condition. Optimal a priori error estimates in corresponding norms are derived for the control, the states and adjoint states, respectively. Finally, we use some numerical examples to validate the theoretical analysis.