- Journal Home
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
We consider a new Hermite cubic orthogonal spline collocation (OSC) scheme to solve a two-point boundary value problem (TPBVP) with boundary subintervals excluded from the given interval. Such TPBVPs arise, for example, in the alternating direction implicit OSC solution of parabolic problems on arbitrary domains. The scheme involves transfer of the given Dirichlet boundary values to the end points of the interior interval. The convergence analysis shows that the scheme is of optimal fourth order accuracy in the maximum norm. Numerical results confirm the theoretical results.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/445.html} }We consider a new Hermite cubic orthogonal spline collocation (OSC) scheme to solve a two-point boundary value problem (TPBVP) with boundary subintervals excluded from the given interval. Such TPBVPs arise, for example, in the alternating direction implicit OSC solution of parabolic problems on arbitrary domains. The scheme involves transfer of the given Dirichlet boundary values to the end points of the interior interval. The convergence analysis shows that the scheme is of optimal fourth order accuracy in the maximum norm. Numerical results confirm the theoretical results.