- Journal Home
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
In this paper, an immersed finite volume element (IFVE) method is developed for solving some interface problems with nonhomogeneous jump conditions. Using the source removal technique of nonhomogeneous jump conditions, the new IFVE method is the finite volume element method applied to the equivalent interface problems with homogeneous jump conditions and have properties of the usual finite volume element method. The resulting IFVE scheme is simple and second order accurate with a uniform rectangular partition and the dual meshes. Error analyses show that the new IFVE method with usual $O(h^2)$ convergence in the $L^2$ norm and $O(h)$ in the $H^1$ norm. Numerical examples are also presented to demonstrate the efficiency of the new method.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/444.html} }In this paper, an immersed finite volume element (IFVE) method is developed for solving some interface problems with nonhomogeneous jump conditions. Using the source removal technique of nonhomogeneous jump conditions, the new IFVE method is the finite volume element method applied to the equivalent interface problems with homogeneous jump conditions and have properties of the usual finite volume element method. The resulting IFVE scheme is simple and second order accurate with a uniform rectangular partition and the dual meshes. Error analyses show that the new IFVE method with usual $O(h^2)$ convergence in the $L^2$ norm and $O(h)$ in the $H^1$ norm. Numerical examples are also presented to demonstrate the efficiency of the new method.