- Journal Home
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
In this paper, a local and parallel algorithm based on the multilevel discretization is proposed for solving the eigenvalue problem by the finite element method. With this new scheme, the eigenvalue problem solving in the finest grid is transferred to solutions of the eigenvalue problems on the coarsest mesh and a series of solutions of boundary value problems on each level mesh. Therefore this type of multilevel local and parallel method improves the overall efficiency of solving the eigenvalue problem. Some numerical experiments are presented to validate the efficiency of the new method.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/427.html} }In this paper, a local and parallel algorithm based on the multilevel discretization is proposed for solving the eigenvalue problem by the finite element method. With this new scheme, the eigenvalue problem solving in the finest grid is transferred to solutions of the eigenvalue problems on the coarsest mesh and a series of solutions of boundary value problems on each level mesh. Therefore this type of multilevel local and parallel method improves the overall efficiency of solving the eigenvalue problem. Some numerical experiments are presented to validate the efficiency of the new method.