- Journal Home
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
In this paper, we discuss the backward Euler method along with its linearized version for the Kelvin-Voigt viscoelastic fluid flow model with non zero forcing function, which is either independent of time or in $\rm{L}^∞(\rm{L^2})$. After deriving some bounds for the semidiscrete scheme, a priori estimates in Dirichlet norm for the fully discrete scheme are obtained, which are valid uniformly in time using a combination of discrete Gronwall's lemma and Stolz-Cesaro's classical result for sequences. Moreover, an existence of a discrete global attractor for the discrete problem is established. Further, optimal a priori error estimates are derived, whose bounds may depend exponentially in time. Under uniqueness condition, these estimates are shown to be uniform in time. Even when $\rm{f}$ = 0, the present result improves upon earlier result of Bajpai et al. (IJNAM,10 (2013), pp.481-507) in the sense that error bounds in this article depend on $1 / \sqrt{\kappa}$ as against $1 / \kappa^r$, $r \geq 1$. Finally, numerical experiments are conducted which confirm our theoretical findings.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/414.html} }In this paper, we discuss the backward Euler method along with its linearized version for the Kelvin-Voigt viscoelastic fluid flow model with non zero forcing function, which is either independent of time or in $\rm{L}^∞(\rm{L^2})$. After deriving some bounds for the semidiscrete scheme, a priori estimates in Dirichlet norm for the fully discrete scheme are obtained, which are valid uniformly in time using a combination of discrete Gronwall's lemma and Stolz-Cesaro's classical result for sequences. Moreover, an existence of a discrete global attractor for the discrete problem is established. Further, optimal a priori error estimates are derived, whose bounds may depend exponentially in time. Under uniqueness condition, these estimates are shown to be uniform in time. Even when $\rm{f}$ = 0, the present result improves upon earlier result of Bajpai et al. (IJNAM,10 (2013), pp.481-507) in the sense that error bounds in this article depend on $1 / \sqrt{\kappa}$ as against $1 / \kappa^r$, $r \geq 1$. Finally, numerical experiments are conducted which confirm our theoretical findings.