- Journal Home
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
We introduce a flux recovery scheme for the computed solution of a quadratic immersed finite element method introduced by Lin et al. in [13]. The recovery is done at nodes and interface point first and by interpolation at the remaining points. In the case of piecewise constant diffusion coefficient, we show that the end nodes are superconvergence points for both the primary variable $p$ and its flux $u$. Furthermore, in the case of piecewise constant diffusion coefficient without the absorption term the errors at end nodes and interface point in the approximation of $u$ and $p$ are zero. In the general case, flux error at end nodes and interface point is third order. Numerical results are provided to confirm the theory.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/412.html} }We introduce a flux recovery scheme for the computed solution of a quadratic immersed finite element method introduced by Lin et al. in [13]. The recovery is done at nodes and interface point first and by interpolation at the remaining points. In the case of piecewise constant diffusion coefficient, we show that the end nodes are superconvergence points for both the primary variable $p$ and its flux $u$. Furthermore, in the case of piecewise constant diffusion coefficient without the absorption term the errors at end nodes and interface point in the approximation of $u$ and $p$ are zero. In the general case, flux error at end nodes and interface point is third order. Numerical results are provided to confirm the theory.