- Journal Home
- Volume 22 - 2025
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Int. J. Numer. Anal. Mod., 22 (2025), pp. 728-744.
Published online: 2025-05
Cited by
- BibTex
- RIS
- TXT
Diffuse domain methods (DDMs) have gained significant attention for solving partial differential equations (PDEs) on complex geometries. These methods approximate the domain by replacing sharp boundaries with a diffuse layer of thickness $ε,$ which scales with the minimum grid size. This reformulation extends the problem to a regular domain, incorporating boundary conditions via singular source terms. In this work, we analyze the convergence of a DDM approximation problem with transmission-type Neumann boundary conditions. We prove that the energy functional of the diffuse domain problem $Γ$-converges to the energy functional of the original problem as $ε → 0.$ Additionally, we show that the solution of the diffuse domain problem strongly converges in $H^1 (Ω),$ up to a subsequence, to the solution of the original problem, as $ε → 0.$
}, issn = {2617-8710}, doi = {https://doi.org/10.4208/ijnam2025-1031}, url = {http://global-sci.org/intro/article_detail/ijnam/24083.html} }Diffuse domain methods (DDMs) have gained significant attention for solving partial differential equations (PDEs) on complex geometries. These methods approximate the domain by replacing sharp boundaries with a diffuse layer of thickness $ε,$ which scales with the minimum grid size. This reformulation extends the problem to a regular domain, incorporating boundary conditions via singular source terms. In this work, we analyze the convergence of a DDM approximation problem with transmission-type Neumann boundary conditions. We prove that the energy functional of the diffuse domain problem $Γ$-converges to the energy functional of the original problem as $ε → 0.$ Additionally, we show that the solution of the diffuse domain problem strongly converges in $H^1 (Ω),$ up to a subsequence, to the solution of the original problem, as $ε → 0.$