- Journal Home
- Volume 22 - 2025
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Int. J. Numer. Anal. Mod., 22 (2025), pp. 246-267.
Published online: 2025-02
Cited by
- BibTex
- RIS
- TXT
In this paper, we propose an energy-conservative finite difference time domain (FDTD) method for solving the coupled nonlinear Klein-Gordon equations (CNKGEs) in the nonrelativistic limit regime, involving a small parameter $0 < ε ≪ 1$ which is inversely proportional to the speed of light. Employing cut-off technique, we analyze rigorously error estimates for the numerical method. Numerical results are reported to confirm the energy-conservative property and the error results in $l^2$ norm and $H^1$ norm under different values of $ε.$
}, issn = {2617-8710}, doi = {https://doi.org/10.4208/ijnam2025-1012}, url = {http://global-sci.org/intro/article_detail/ijnam/23823.html} }In this paper, we propose an energy-conservative finite difference time domain (FDTD) method for solving the coupled nonlinear Klein-Gordon equations (CNKGEs) in the nonrelativistic limit regime, involving a small parameter $0 < ε ≪ 1$ which is inversely proportional to the speed of light. Employing cut-off technique, we analyze rigorously error estimates for the numerical method. Numerical results are reported to confirm the energy-conservative property and the error results in $l^2$ norm and $H^1$ norm under different values of $ε.$