- Journal Home
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Int. J. Numer. Anal. Mod., 21 (2024), pp. 587-608.
Published online: 2024-06
Cited by
- BibTex
- RIS
- TXT
In this paper, we introduce a weak Galerkin finite element method for the dual-porosity-Stokes model. The dual-porosity-Stokes model couples the dual-porosity equations with the Stokes equations through four interface conditions. In this method, we define several weak Galerkin finite element spaces and weak differential operators. We provide the weak Galerkin scheme for the model, and establish the well-posedness of the numerical scheme. The optimal convergence orders of errors in the energy norm are derived. Finally, we verify the effectiveness of the numerical method with different weak Galerkin elements on different meshes.
}, issn = {2617-8710}, doi = {https://doi.org/10.4208/ijnam2024-1023}, url = {http://global-sci.org/intro/article_detail/ijnam/23203.html} }In this paper, we introduce a weak Galerkin finite element method for the dual-porosity-Stokes model. The dual-porosity-Stokes model couples the dual-porosity equations with the Stokes equations through four interface conditions. In this method, we define several weak Galerkin finite element spaces and weak differential operators. We provide the weak Galerkin scheme for the model, and establish the well-posedness of the numerical scheme. The optimal convergence orders of errors in the energy norm are derived. Finally, we verify the effectiveness of the numerical method with different weak Galerkin elements on different meshes.