- Journal Home
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Int. J. Numer. Anal. Mod., 21 (2024), pp. 315-352.
Published online: 2024-05
Cited by
- BibTex
- RIS
- TXT
In this work, a stationary 2d Navier-Stokes problem with nonlinear feedback forces field is considered in the stream-function formulation. We use the Continuous/Discontinuous Finite Element Method (CD-FEM), with interior penalty terms, to numerically solve the associated boundary-value problem. For the associated continuous and discrete problems, we prove the existence of weak solutions and establish the conditions for their uniqueness. Consistency, stability and convergence of the method are also shown analytically. To validate the numerical model regarding its applicability and robustness, several test cases are carried out.
}, issn = {2617-8710}, doi = {https://doi.org/10.4208/ijnam2024-1013}, url = {http://global-sci.org/intro/article_detail/ijnam/23127.html} }In this work, a stationary 2d Navier-Stokes problem with nonlinear feedback forces field is considered in the stream-function formulation. We use the Continuous/Discontinuous Finite Element Method (CD-FEM), with interior penalty terms, to numerically solve the associated boundary-value problem. For the associated continuous and discrete problems, we prove the existence of weak solutions and establish the conditions for their uniqueness. Consistency, stability and convergence of the method are also shown analytically. To validate the numerical model regarding its applicability and robustness, several test cases are carried out.