- Journal Home
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Int. J. Numer. Anal. Mod., 21 (2024), pp. 221-243.
Published online: 2024-04
Cited by
- BibTex
- RIS
- TXT
We consider a semi-discrete finite element method for a dynamic model for linear viscoelastic materials based on the constitutive law of fractional order. The corresponding integro-differential equation is of a Mittag-Leffler type convolution kernel. A 4-node hybrid stress quadrilateral finite element is used for the spatial discretization. We show the existence and uniqueness of the semi-discrete solution, then derive some error estimates. Finally, we provide several numerical examples to verify the theoretical results.
}, issn = {2617-8710}, doi = {https://doi.org/10.4208/ijnam2024-1009}, url = {http://global-sci.org/intro/article_detail/ijnam/23025.html} }We consider a semi-discrete finite element method for a dynamic model for linear viscoelastic materials based on the constitutive law of fractional order. The corresponding integro-differential equation is of a Mittag-Leffler type convolution kernel. A 4-node hybrid stress quadrilateral finite element is used for the spatial discretization. We show the existence and uniqueness of the semi-discrete solution, then derive some error estimates. Finally, we provide several numerical examples to verify the theoretical results.