- Journal Home
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Int. J. Numer. Anal. Mod., 20 (2023), pp. 497-517.
Published online: 2023-05
Cited by
- BibTex
- RIS
- TXT
In this work, we study theoretically and numerically the non-stationary Navier-Stokes’s equations under power law slip boundary condition. We establish existence of a unique solution by using a semi-discretization in time combined with the weak convergence approach. Next, we formulate and analyze the discretization in time and the finite element approximation in space associated to the continuous problem. We derive optimal convergence in time and space provided that the solution is regular enough on the slip zone. Iterative schemes for solving the nonlinear problems is formulated and convergence is studied. Numerical experiments presented confirm the theoretical findings.
}, issn = {2617-8710}, doi = {https://doi.org/10.4208/ijnam2023-1021}, url = {http://global-sci.org/intro/article_detail/ijnam/21713.html} }In this work, we study theoretically and numerically the non-stationary Navier-Stokes’s equations under power law slip boundary condition. We establish existence of a unique solution by using a semi-discretization in time combined with the weak convergence approach. Next, we formulate and analyze the discretization in time and the finite element approximation in space associated to the continuous problem. We derive optimal convergence in time and space provided that the solution is regular enough on the slip zone. Iterative schemes for solving the nonlinear problems is formulated and convergence is studied. Numerical experiments presented confirm the theoretical findings.