- Journal Home
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Int. J. Numer. Anal. Mod., 20 (2023), pp. 92-133.
Published online: 2022-11
Cited by
- BibTex
- RIS
- TXT
The anisotropic and heterogeneous $N$-dimensional wave equation, controlled and observed at the boundary, is considered as a port-Hamiltonian system. A recent structure-preserving mixed Galerkin method is applied, leading directly to a finite-dimensional port-Hamiltonian system: its numerical analysis is carried out in a general framework. Optimal choices of mixed finite elements are then proved to reach the best trade-off between the convergence rate and the number of degrees of freedom for the state error. Exta compatibility conditions are identified for the Hamiltonian error to be twice that of the state error, and numerical evidence is provided that some combinations of finite element families meet these conditions. Numerical simulations are performed in 2D to illustrate the main theorems among several choices of classical finite element families. Several test cases are provided, including non-convex domain, anisotropic or heterogeneous cases and absorbing boundary conditions.
}, issn = {2617-8710}, doi = {https://doi.org/10.4208/ijnam2023-1005}, url = {http://global-sci.org/intro/article_detail/ijnam/21206.html} }The anisotropic and heterogeneous $N$-dimensional wave equation, controlled and observed at the boundary, is considered as a port-Hamiltonian system. A recent structure-preserving mixed Galerkin method is applied, leading directly to a finite-dimensional port-Hamiltonian system: its numerical analysis is carried out in a general framework. Optimal choices of mixed finite elements are then proved to reach the best trade-off between the convergence rate and the number of degrees of freedom for the state error. Exta compatibility conditions are identified for the Hamiltonian error to be twice that of the state error, and numerical evidence is provided that some combinations of finite element families meet these conditions. Numerical simulations are performed in 2D to illustrate the main theorems among several choices of classical finite element families. Several test cases are provided, including non-convex domain, anisotropic or heterogeneous cases and absorbing boundary conditions.