- Journal Home
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Int. J. Numer. Anal. Mod., 20 (2023), pp. 47-66.
Published online: 2022-11
Cited by
- BibTex
- RIS
- TXT
Optimal control problems are a class of optimisation problems with partial differential equations as constraints. These problems arise in many application areas of science and engineering. The finite element method was used to transform the optimal control problems of an elliptic partial differential equation into a system of linear equations of saddle point form. The main focus of this paper is to characterise and exploit the structure of the coefficient matrix of the saddle point system to build an efficient numerical process. These systems are of large dimension, block, sparse, indefinite and ill conditioned. The numerical solution of saddle point problems is a computational task since well known numerical schemes perform poorly if they are not properly preconditioned. The main task of this paper is to construct a preconditioner the mimic the structure of the system coefficient matrix to accelerate the convergence of the generalised minimal residual method. Explicit expression of the eigenvalue and eigenvectors for the preconditioned matrix are derived. The main outcome is to achieve optimal convergence results in a small number of iterations with respect to the decreasing mesh size $h$ and the changes in $δ$ the regularisation problem parameters. The numerical results demonstrate the effectiveness and performance of the proposed preconditioner compared to the other existing preconditioners and confirm theoretical results.
}, issn = {2617-8710}, doi = {https://doi.org/10.4208/ijnam2023-1003}, url = {http://global-sci.org/intro/article_detail/ijnam/21204.html} }Optimal control problems are a class of optimisation problems with partial differential equations as constraints. These problems arise in many application areas of science and engineering. The finite element method was used to transform the optimal control problems of an elliptic partial differential equation into a system of linear equations of saddle point form. The main focus of this paper is to characterise and exploit the structure of the coefficient matrix of the saddle point system to build an efficient numerical process. These systems are of large dimension, block, sparse, indefinite and ill conditioned. The numerical solution of saddle point problems is a computational task since well known numerical schemes perform poorly if they are not properly preconditioned. The main task of this paper is to construct a preconditioner the mimic the structure of the system coefficient matrix to accelerate the convergence of the generalised minimal residual method. Explicit expression of the eigenvalue and eigenvectors for the preconditioned matrix are derived. The main outcome is to achieve optimal convergence results in a small number of iterations with respect to the decreasing mesh size $h$ and the changes in $δ$ the regularisation problem parameters. The numerical results demonstrate the effectiveness and performance of the proposed preconditioner compared to the other existing preconditioners and confirm theoretical results.