- Journal Home
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
A new embedded low-regularity integrator is proposed for the quadratic nonlinear Schrödinger equation on the one-dimensional torus. Second-order convergence in $H^\gamma$ is proved for solutions in $C([0, T]; H^\gamma)$ with $\gamma > \frac{3}{2},$ i.e., no additional regularity in the solution is required. The proposed method is fully explicit and can be computed by the fast Fourier transform with $\mathcal{(O} log N)$ operations at every time level, where $N$ denotes the degrees of freedom in the spatial discretization. The method extends the first-order convergent low-regularity integrator in [14] to second-order time discretization in the case $\gamma >\frac{3}{2}$ without requiring additional regularity of the solution. Numerical experiments are presented to support the theoretical analysis by illustrating the convergence of the proposed method.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/20931.html} }A new embedded low-regularity integrator is proposed for the quadratic nonlinear Schrödinger equation on the one-dimensional torus. Second-order convergence in $H^\gamma$ is proved for solutions in $C([0, T]; H^\gamma)$ with $\gamma > \frac{3}{2},$ i.e., no additional regularity in the solution is required. The proposed method is fully explicit and can be computed by the fast Fourier transform with $\mathcal{(O} log N)$ operations at every time level, where $N$ denotes the degrees of freedom in the spatial discretization. The method extends the first-order convergent low-regularity integrator in [14] to second-order time discretization in the case $\gamma >\frac{3}{2}$ without requiring additional regularity of the solution. Numerical experiments are presented to support the theoretical analysis by illustrating the convergence of the proposed method.