- Journal Home
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
On an Adaptive LDG for the $P$-Laplace Problem
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{IJNAM-19-315,
author = {Liu , DongjieZhou , Le and Zhang , Xiaoping},
title = {On an Adaptive LDG for the $P$-Laplace Problem },
journal = {International Journal of Numerical Analysis and Modeling},
year = {2022},
volume = {19},
number = {2-3},
pages = {315--328},
abstract = {
In this paper we consider the adaptive local discontinuous Galerkin(LDG) method for the $p$-Laplace problem in polygonal regions in $\mathbb{R}^2$. We present new sharper a posteriori error estimate for the LDG approximation of the $p$-Laplacian in the new framework. Several examples are given to confirm the reliability of the estimate.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/20483.html} }
TY - JOUR
T1 - On an Adaptive LDG for the $P$-Laplace Problem
AU - Liu , Dongjie
AU - Zhou , Le
AU - Zhang , Xiaoping
JO - International Journal of Numerical Analysis and Modeling
VL - 2-3
SP - 315
EP - 328
PY - 2022
DA - 2022/04
SN - 19
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/ijnam/20483.html
KW - $p$-Laplace, local discontinuous Galerkin methods, quasi-norm, a posteriori error estimate.
AB -
In this paper we consider the adaptive local discontinuous Galerkin(LDG) method for the $p$-Laplace problem in polygonal regions in $\mathbb{R}^2$. We present new sharper a posteriori error estimate for the LDG approximation of the $p$-Laplacian in the new framework. Several examples are given to confirm the reliability of the estimate.
Liu , DongjieZhou , Le and Zhang , Xiaoping. (2022). On an Adaptive LDG for the $P$-Laplace Problem .
International Journal of Numerical Analysis and Modeling. 19 (2-3).
315-328.
doi:
Copy to clipboard