- Journal Home
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
We consider a second order singularly perturbed boundary value problem, of reaction-convection-diffusion type with two small parameters, and the approximation of its solution by the $hp$ version of the Finite Element Method on the so-called $Spectral$ $Boundary$ $Layer$ mesh. We show that the method converges uniformly, with respect to both singular perturbation parameters, at an exponential rate when the error is measured in the energy norm. Numerical examples are also presented, which illustrate our theoretical findings as well as compare the proposed method with others found in the literature.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/19111.html} }We consider a second order singularly perturbed boundary value problem, of reaction-convection-diffusion type with two small parameters, and the approximation of its solution by the $hp$ version of the Finite Element Method on the so-called $Spectral$ $Boundary$ $Layer$ mesh. We show that the method converges uniformly, with respect to both singular perturbation parameters, at an exponential rate when the error is measured in the energy norm. Numerical examples are also presented, which illustrate our theoretical findings as well as compare the proposed method with others found in the literature.