- Journal Home
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
In this work, we propose and analyze a class of bubble enriched quadratic finite volume element schemes for anisotropic diffusion problems on triangular meshes. The trial function space is defined as quadratic finite element space by adding a space which consists of element-wise bubble functions, and the test function space is the piecewise constant space. For the class of schemes, under the coercivity result, we proved that $|u − u_h|_1$ = $\mathcal{O}(h^2)$ and $‖u − u_h‖_0$ = $\mathcal{O}(h^3)$, where $u$ is the exact solution and $u_h$ is the bubble enriched quadratic finite volume element solution. The theoretical findings are validated by some numerical examples.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/18356.html} }In this work, we propose and analyze a class of bubble enriched quadratic finite volume element schemes for anisotropic diffusion problems on triangular meshes. The trial function space is defined as quadratic finite element space by adding a space which consists of element-wise bubble functions, and the test function space is the piecewise constant space. For the class of schemes, under the coercivity result, we proved that $|u − u_h|_1$ = $\mathcal{O}(h^2)$ and $‖u − u_h‖_0$ = $\mathcal{O}(h^3)$, where $u$ is the exact solution and $u_h$ is the bubble enriched quadratic finite volume element solution. The theoretical findings are validated by some numerical examples.