- Journal Home
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
In this paper, we study the rate of convergence of a sequential quadratic programming (SQP) method for nonlinear semidefinite programming (SDP) problems. Since the linear SDP constraints does not contribute to the Hessian of the Lagrangian, we propose a reduced SQP-type method, which solves an equivalent and reduced type of the nonlinear SDP problem near the optimal point. For the reduced SDP problem, the well-known and often mentioned "$σ$-term" in the second order sufficient condition vanishes. We analyze the rate of local convergence of the reduced SQP-type method and give a sufficient and necessary condition for its superlinear convergence. Furthermore, we give a sufficient and necessary condition for superlinear convergence of the SQP-type method under the nondegeneracy condition, the second-order sufficient condition with $σ$-term and the strict complementarity condition.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/17871.html} }In this paper, we study the rate of convergence of a sequential quadratic programming (SQP) method for nonlinear semidefinite programming (SDP) problems. Since the linear SDP constraints does not contribute to the Hessian of the Lagrangian, we propose a reduced SQP-type method, which solves an equivalent and reduced type of the nonlinear SDP problem near the optimal point. For the reduced SDP problem, the well-known and often mentioned "$σ$-term" in the second order sufficient condition vanishes. We analyze the rate of local convergence of the reduced SQP-type method and give a sufficient and necessary condition for its superlinear convergence. Furthermore, we give a sufficient and necessary condition for superlinear convergence of the SQP-type method under the nondegeneracy condition, the second-order sufficient condition with $σ$-term and the strict complementarity condition.