- Journal Home
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
The paper focuses on numerical study of the incompressible miscible flow in porous media. The proposed algorithm is based on a fully decoupled and linearized scheme in the temporal direction, classical Galerkin-mixed approximations in the FE space ($V^r_h$, $S^{r-1}_h$ × $H^{r-1}_h$) ($r$ ≥ 1) in the spatial direction and a post-processing technique for the velocity/pressure, where $V^r_h$ and $S^{r-1}_h$ × $H^{r-1}_h$ denotes the standard $C^0$ Lagrange FE and the Raviart-Thomas FE spaces, respectively. The decoupled and linearized Galerkin-mixed FEM enjoys many advantages over existing methods. At each time step, the method only requires solving two linear systems for the concentration and velocity/pressure. Analysis in our recent work [37] shows that the classical Galerkin-mixed method provides the optimal accuracy $O$($h^{r+1}$) for the numerical concentration in $L^2$-norm, instead of $O$($h^r$) as shown in previous analysis. A new numerical velocity/pressure of the same order accuracy as the concentration can be obtained by the post-processing in the proposed algorithm. Extensive numerical experiments in both two- and three-dimensional spaces, including smooth and non-smooth problems, are presented to illustrate the accuracy and stability of the algorithm. Our numerical results show that the one-order lower approximation to the velocity/pressure does not influence the accuracy of the numerical concentration, which is more important in applications.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/16863.html} }The paper focuses on numerical study of the incompressible miscible flow in porous media. The proposed algorithm is based on a fully decoupled and linearized scheme in the temporal direction, classical Galerkin-mixed approximations in the FE space ($V^r_h$, $S^{r-1}_h$ × $H^{r-1}_h$) ($r$ ≥ 1) in the spatial direction and a post-processing technique for the velocity/pressure, where $V^r_h$ and $S^{r-1}_h$ × $H^{r-1}_h$ denotes the standard $C^0$ Lagrange FE and the Raviart-Thomas FE spaces, respectively. The decoupled and linearized Galerkin-mixed FEM enjoys many advantages over existing methods. At each time step, the method only requires solving two linear systems for the concentration and velocity/pressure. Analysis in our recent work [37] shows that the classical Galerkin-mixed method provides the optimal accuracy $O$($h^{r+1}$) for the numerical concentration in $L^2$-norm, instead of $O$($h^r$) as shown in previous analysis. A new numerical velocity/pressure of the same order accuracy as the concentration can be obtained by the post-processing in the proposed algorithm. Extensive numerical experiments in both two- and three-dimensional spaces, including smooth and non-smooth problems, are presented to illustrate the accuracy and stability of the algorithm. Our numerical results show that the one-order lower approximation to the velocity/pressure does not influence the accuracy of the numerical concentration, which is more important in applications.