- Journal Home
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
This paper proposes a new constrained total generalized variation (TGV)-shearlet model to the compressive sensing magnetic resonance imaging (MRI) reconstruction via the simple parameter estimation scheme. Due to the non-smooth term included in the proposed model, we employ the alternating direction method of multipliers (ADMM) scheme to split the original problem into some easily solvable subproblems in order to use the convenient soft thresholding operator and the fast Fourier transformation (FFT). Since the proposed numerical algorithm belongs to the framework of the classic ADMM, the convergence can be kept. Experimental results demonstrate that the proposed method outperforms the state-of-the-art unconstrained reconstruction methods in removing artifacts and achieves lower reconstruction errors on the tested dataset.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/16861.html} }This paper proposes a new constrained total generalized variation (TGV)-shearlet model to the compressive sensing magnetic resonance imaging (MRI) reconstruction via the simple parameter estimation scheme. Due to the non-smooth term included in the proposed model, we employ the alternating direction method of multipliers (ADMM) scheme to split the original problem into some easily solvable subproblems in order to use the convenient soft thresholding operator and the fast Fourier transformation (FFT). Since the proposed numerical algorithm belongs to the framework of the classic ADMM, the convergence can be kept. Experimental results demonstrate that the proposed method outperforms the state-of-the-art unconstrained reconstruction methods in removing artifacts and achieves lower reconstruction errors on the tested dataset.